대자연, 음악, 여행의 조화를 찾아

비지니스 & 기술/기타

전고체 배터리(全固體, solid-state battery)

SaintShin 2022. 11. 4. 17:54

전고체전지란 전지 양극과 음극 사이에 있는 전해질을 기존 액체에서 고체로 대체한 차세대 배터리다.

리튬이온배터리에 필요한 전해액과 분리막을 없애고, 비는 공간에 에너지밀도가 더 높은 물질을 집어넣을 수 있다. 액체로 만들어진 기존 배터리는 양극과 음극이 만날 경우 화재가 발생할 위험이 있으나, 전고체전지는 리튬이온이 이동하는 전해질을 고체로 만들기에 항상 고정돼 있어 구멍이 뚫려도 폭발하지 않고 정상 작동한다. 액체전해질보다 뛰어안 내열성과 내구성 때문에 폭발이나 화재 가능성이 낮고 크기도 줄일 수 있다.

전고체전지는 안전성뿐만 아니라 용량과 두께 측면에서 플렉서블(flexible:휘어지는) 배터리를 구현할 최적의 조건을 갖춘 것으로 평가 받는다. 전해질에 액체가 없어 초박막을 만들 수 있고, 양/음극을 여러 겹 쌓아 고전압/고밀도 배터리 구현이 가능하기 때문이다. 리튬이온 배터리와 비교해 대용량과 높은 안전성이 특징이다.

 

전고체 배터리의 작동 원리
리튬이온배터리(위)와 전고체배터리 구조.

 

 

기술개발 및 시장 요약

 

전고체 배터리 개념은 1980년대 처음 제시됐으나 빛을 보지 못하다가 일본 토요타가 2010년 황화물 전해질을 사용한 배터리 시제품을 공개한 뒤로 연구가 눈에 띄게 늘었다. 현재는 소재 후보군으로 황화물과 산화물, 고분자 3종이 발굴됐다. 이 가운데 황화물 소재는 가장 앞서 나간다. 일본은 전고체 배터리 연구에서 가장 앞서 나가는 국가로 손꼽힌다.일본에선 주로 황화물 연구가 주를 이룬다.

1991년 일본 소니가 첫 개발해 상용화한 리튬이온 배터리를 대체할 차세대 2차전지로는 리튬에어 전지, 리튬메탈 전지, 리튬황 전지, 전고체 전지가 있다. 그 중에서 전고체 전지를 탑재한 전기차를 2022년 도요타가 출시할 계획이다. 한국은 2025년 전고체 배터리를 상용화할 계획이다.

전세계 전기차용 전고체 배터리 시장이 2030년 최대 100조원 규모로 급성장할 것으로 관측되고 있다.
SNE리서치에 따르면 전고체 배터리를 탑재한 전기차 비율은 2024년 2%에서 2030년 10%로 증가할 전망이다. 글로벌 조사 업체 Allied market research는 2017년 633억원이었던 글로벌 전고체 배터리 시장이 2025년 1조6820억원으로 확대한다고 예측했다. 일본 시장조사업체 후지경제는 2035년 전고체 배터리 시장규모가 32조6000억원에 이를 것으로 내다 봤다

토요타는 전고체 배터리를 사용하면 출력과 전기저장량이 액체 전지보다 2배 이상 늘어날 것으로 보고 있다. 토요타, 다이슨, 포르셰 등 글로벌 2차전지 수요기업이 전고체 전지 사용화 계획을 연이어 발표하고 있다. 

충전하는데 몇 시간씩 걸리는 리튬 이온 전지에 비해 전고체 전지는 불과 5분이면 80% 충전이 가능하다. 주행거리도 리튬이온전지의 2배 이상에 달한다. 기존의 가솔린, 경유 차량의 주유소 급유시간이 5분이다.

전고체 전지의 실용화 시점은 2025년 안팎으로 예상된다. BMW가 전고체 전지 양산 시점을 2026년이라고 못 박기도 했다.  LG에너지솔루션과 삼성SDI, 중국 CATL, 일본 파나소닉 등이 전고체 배터리를 개발 중이다.
주요 완성차 업체들도 전고체 배터리 개발에 뛰어들었다. 일본 토요타는 2008년 차세대 배터리 연구소를 세우면서 정부, 학계와 함께 전고체 배터리를 개발한다고 발표했다. 독일 BMW는 미국의 연료전지기업 솔리드파워와 손잡고 전고체 배터리를 장착한 전기차를 2025∼2026년께 출시할 계획이다.

 

낮은 출력과 짦은 수명 극복이 관건 : 전고체 신 재료 개발


그러나 전고체 전지는 고체 형태이다 보니 액체 전해질에 비해 이온 전도도가 낮아 출력이 낮고 수명이 짧다는 단점이 있다. 이에 따라 세계 산업계는 최대한 이온 전도도를 높일 수 있는 전고체 재료 찾기에 나섰다. 유력한 재료로 꼽히는 것이 폴리머, 옥사이드, 인산염, 황화물 등 네 가지다. 다만 각각 그 특성에 따른 장단점이 명확하다.

 - 폴리머는 이온전도율이나 온도 변화에 대한 안정성이 떨어지지만 생산 용이성이 높다. 보쉬에서 선제적으로 폴리머 전고체 전지 개발에 나선 상태다.
 - 한편 옥사이드와 인산염은 이온전도율이나 안정성은 괜찮은 편이나 생산 용이성이 낮다.
 - 산업계의 주목을 받는 물질은 황화물이다. 이온전도율, 생산 용이성, 온도 변화에 대한 방어력 등이 두루 높다. 토요타삼성SDI 등 세계 제조기업에서 이를 기반으로 한 전고체 전지 개발에 열을 올리고 있는 것도 이 때문이다.

 

리튬이온 배터리와 전고체 배터리

  • 전고체 전지와 기존 리튬 2차전지의 작동원리는 동일하나, 전지의 구성요소 중 가연성 액체로 되어 있는 전해질을 고체 전해질로 바꾸어 온도 변화와 외부 충격에 따른 화재·폭발 위험이 현저히 감소된다. 리튬이온 배터리의 액체 또는 겔(Gel) 상태의 전해질은 온도에 따라 동파·기화·팽창하거나, 외부 충격으로 전해질이 누출될 시 화재·폭발이 발생한다.
  • 온도 변화와 외부 충격 등에 대비한 안전장치 및 분리막이 필요 없으므로 동일한 크기로 원가절감과 고용량 구현이 가능하다.
    - 화재위험이 없으므로 배터리팩 공간의 30% 이상을 차지하는 냉각장치가 제거된 공간에 추가적으로 배터리셀을  채워 넣어 에너지밀도를 증대시킬 수 있다.- 액체 전해질에서 양극과 음극을 물리적으로 차단해 전기적 단락을 방지하는 역할을 했던 분리막이 필요 없어 부피 감소 및 원가 절감이 가능하다.
    - 기존 리튬이온 배터리는 모노폴라(Mono Polar) 구조로서 용량 확장을 위해 여러 개의 셀을 연결해야 되는 반면, 전고체 전지는 멀티폴라(MOl3R-Polar) 구조가 가능해 부피를 감소할 수 있다.
  • 용량이 흑연의 10배에 달하는 등 월등한 성능에도 불구하고 극간 화재·폭발 위험때문에 사용하지 못했던 리튬금속을 음극활물질로 사용할 수 있어 동일한 크기로 고용량을 구현할 수 있다.

 

장점

  • 폭발 및 발화 특성이 없어 안전성이 우수 : 
    고체 전해질은 온도 변화에 따른 증발이나 외부 충격에 따른 누액 위험이 없다. 부피팽창(swelling)이 발생하지 않고, 열과 압력 등 극한 외부 조건에서도 정상 작동할 수 있다.
  • 높은 에너지 밀도를 구현 가능 : 
    이는 적층 가능한 바이폴라(bipolar) 구조의 장점이다. 유기 전해액을 고체 전해질로 대체하면 집전체 양면에 음극과 양극이 결합된 바이폴라 전극을 제조할 수 있다. 바이폴라 전극의 적용으로 단전지에서 10V 이상의 고전압이 발현할 수 있다. 예컨대 리튬이온 배터리에서 14.4V를 구현하려면 3.6V 전지 4개를 배치해야 하는데, 전고체 배터리는 단전지로 가능하다. 단전지화의 효과로 분리막, 집전체, 셀외장재(파우치) 등이 감소해 부피가 줄어들고, BMS(battery management system)를 최소화하기 때문에 부피당 에너지 밀도를 높일 수 있다.
  • 고출력 가능 :
    액체 전해질과 달리 리튬이온이 용매와 분리되는 탈용매 반응이 불필요하다. 충방전 반응이 곧 고체 내 리튬이온의 확산 반응으로 반영돼 높은 출력이 기대된다.
  • 사용 온도 넓음 : 
    기존 유기 전해액에 비해 넓은 온도 영역에서 안정적인 성능을 확보할 수 있다. 특히 저온에서 높은 이온 전도도가 기대된다. 전기차 사용자의 가장 큰 애로사항이 겨울철에 배터리 성능이 저하돼 주행거리가 줄어드는 것이다. 테슬라(Tesla) Model X를 충전 50% 상태에서 추운 밤에 세워두면 다음날 아침 충전율이 30%로 내려간다. 전고체 배터리 시대가 오면 저온 환경의 불안 요인이 해소될 것이다
  • 전지 구조 단순 : 
    분리막이 필요 없다. 제조 공정 상에서 슬러리 상태의 고체 전해질을 양극 활물질에 코팅한다. 액체 전해질의 주액 공정 없이 연속 공정을 통해 다양한 형태의 다층 구조 셀을 구현할 수 있다.

단점

  • 고체 전해질 소재, 활물질-전해질 경계의 높은 저항(계면 저항), 제조 공정 등에 걸쳐 많은 논란과 과제 존재.
    소재는 아직 기대 성능에 미치지 못하고, 특허 이슈가 많다. 셀 제조 과정에서 엄청난 압력과 온도를 필요로 하는데 양산 설비를 구축하기 어렵다. 고체이기 때문에 이질적인 파우더끼리 계면 저항, 전극과 전해질의 계면 저항을 피할 수 없다.
  • 고체 전해질은 액체 전해질에 비해 이온전도도가 낮다는 것이 본질적 문제.
    기존 리튬이온 배터리처럼 전극 제조 시 슬러리로 코팅하면 용량이나 효율 특성이 현저하게 저하된다. 원가 측면에서는 고체 전해질이 액체 전해질과 분리막을 더한 것보다 원가가 낮아야 하는데, 소재의 특성상 당분간 어렵다. 또한 음극재까지 리튬메탈로 변경하면 새로운 생산 설비가 필요하기 때문에 제조원가가 높을 수 밖에 없다.